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ABSTRACT

Narrative visualization facilitates data presentation and communicates insights, while virtual reality
can further enhance immersive and engaging experiences. The combination of these two research
interests shows the potential to revolutionize the way data is presented and understood. Within
the realm of narrative visualization, empirical evidence has particularly highlighted the importance
of camera planning. However, existing works primarily rely on user-intensive manipulation of the
camera, with little effort put into automating the process. To fill the gap, this paper proposes CineFolio,
a semi-automated camera planning method to reduce manual effort and enhance user experience
in immersive narrative visualization. CineFolio combines cinematic theories with graphics criteria,
considering both information delivery and aesthetic enjoyment to ensure a comfortable and engaging
experience. Specifically, we parametrize the considerations into optimizable camera properties and
solve it as a constraint satisfaction problem (CSP) to realize common camera types for narrative
visualization, namely overview camera for absorbing the scale, focus camera for detailed views, moving
camera for animated transitions, and user-controlled camera allowing users to provide inputs to camera
planning. We demonstrate the feasibility of our approach with cases of various data and chart
types. To further evaluate our approach, we conducted a within-subject user study, comparing our
automated method with manual camera control, and the results confirm both effectiveness of the

guided navigation and expressiveness of the cinematic design for narrative visualization.
© 2025 The Authors. Published by Elsevier B.V. on behalf of Zhejiang University and Zhejiang University

Press Co. Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Narrative visualization, as a popular form of storytelling, inte-
grates storytelling techniques, data visualization, and other visual
elements to present data-driven insights (Segel and Heer, 2010).
With the emergence of virtual reality (VR), immersive narrative
visualization presents a gradually increasing potential to tell data
stories in a more immersive and engaging way (Yang et al,
2023; Zhu et al,, 2024). Within the immersive environment, data
visualization could be presented in a three-dimensional space and
take on a scalable and intuitive form to promote data understand-
ing (Lee et al, 2021).

To guide data exploration and engage audiences with narrative
visualization in virtual reality, researchers have explored design
guidelines and principles for immersive data stories (Conlen et al.,
2023; Yang et al, 2023). In their empirical studies, the camera
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is considerably employed to walk the audience through different
data items and thus enhance their experiences. First, an appropri-
ate viewing camera angle helps gain a better perspective of data
items from both emotional (Shi et al.,, 2021) and analytic (Li et al.,
2023) aspects. Second, sequencing various camera perspectives
together provides both focus plus overview to the viewer (Card,
1999; Cao et al.,, 2020), which is beneficial for supporting dif-
ferent narrative goals and driving the narrative smoothly (Amini
et al., 2015). Third, camera movements naturally guide the au-
diences' attention, help them easily follow data changes, and
increase engagement with data visualization (Borkiewicz et al.,
2019; Yu et al., 2024). Finally, various cinematic designs of camera
movement (ie., cinematography) facilitate the expressiveness of
data visualization (Xu et al, 2022; Yu and Lo, 2023). Overall,
well-designed cinematic camera motion can guide viewers' at-
tention in ways that emphasize key insights, convey temporal
changes, and reflect the author’s intent, thereby forming coherent
narrative visualizations.

However, it remains challenging for novice people unfamiliar
with data visualization and film making to create camera move-
ments for immersive visualization. Existing toolkits for creating
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immersive data visualization (Cordeil et al, 2019; Sicat et al.,
2019) are mainly limited to static visualization rather than time-
varying data stories or animations. Therefore, viewers often need
to explore and understand the data on their own without guid-
ance, which is time-consuming and labor-intensive for users who
are not familiar with 3D visualization. Besides, novices may have
difficulty identifying representative characteristics and become
disoriented when faced with multiple data points without guid-
ance. Furthermore, inappropriate usage of cinematography may
result in a confusing rather than engaging data story, particu-
larly if they fail to consider issues such as motion sickness in
VR (Hettinger and Riccio, 1992). To fill this gap, we leverage
design guidelines of cinematography techniques (Conlen et al,
2023; Yang et al, 2023) to develop a semi-automatic camera
planning approach that guides users to explore and understand
immersive narrative visualization.

Camera planning is a classic problem in computer graphics
and both interactive and automatic techniques are widely ex-
plored in various fields including data visualization (Christie et al.,
2008). Previous work (Zheng et al,, 2011; Hsu et al, 2013) has
focused on guiding informative views or tours for data-intensive
3D visualizations to assist visual analytics tasks. In this work, we
frame immersive camera movement more than an optimization
task, but also as a narrative technique that supports narrative
visualization. To enhance expressiveness for camera planning in
immersive narrative visualization, we first conduct a literature
review across disciplines including computer graphics and cine-
matic storytelling. We extract common cinematic keys and distill
a set of high-level considerations and requirements for camera
planning design in immersive narrative visualization.

On this basis, we develop a semi-automatic camera planning
approach CineFolio to support both novice users and experts in
conveying their storytelling goals through four common cine-
matic cameras, i.e., overview camera and focus camera for distinct
views, moving camera for dynamic transitions, and user-controlled
camera for interactive exploration. The method unfolds in two
primary stages centered around glyphs, i.e., viewpoint selection and
path planning. In the viewpoint selection stage, we first decompose
the immersive visualizations into a set of static visualizations of
different keyframes through narrative variation. For each static
visualization, we filter multiple candidate viewpoints based on
the different visual importance of included glyphs. In the path
planning stage, we use these candidate viewpoints to construct
an initial camera path graph model. We generate an optimal
camera moving path with the least transition cost and interpolate
a continuous transition function to obtain the final immersive
data video. Compared to the traditional speed considerations for
regular human motion (Assa et al., 2008; Yeh et al,, 2012), we
take a further step to make the camera trace irregular dynamic
narrations while avoiding motion sickness. While we leverage au-
tomated planning to reduce manual effort, our approach enables
authorship by incorporating user-defined narrative focus, camera
pacing, and interaction control.

In summary, the major contributions of this work include:

e A set of distilled design considerations of camera plan-
ning for immersive narrative visualization based on the
knowledge from cinematic and graphic domains.

e A glyph-based approach CineFolio to automatically gener-
ate a camera path for time-varying immersive visualization
based on user preference.

e Three example cases to demonstrate our method and a user
study to investigate its effectiveness for data understanding,
immersion, and engagement.

Visual Informatics xxx (xxxx) xxx
2. Related work

Narrative Visualization. Narrative visualizations, also known
as data-driven storytelling, integrate data visualizations into nar-
ratives to tell stories with data (Segel and Heer, 2010). It has huge
potential to facilitate data presentation and communicate insights
provided by the data (Riche et al,, 2018; Tong et al., 2018). Segel
and Heer (Segel and Heer, 2010) identified three visual narrative
tactics, i.e., visual structuring (e.g., progress bar), highlighting, and
transition guidance (e.g., animated transition and camera motion).
Among various types of narrative visualization techniques, an-
imation is a widely used technique to enhance expressiveness
and facilitate users’ comprehension, given its intuitive and en-
gaging nature (Chalbi et al., 2019; Chevalier et al., 2014, 2016). In
animated data stories, camera motion has been validated as an ef-
fective element of transition in terms of narration guidance (Tang
et al., 2020), aesthetic enjoyment (Shi et al, 2021), and emotion
delivery (Lan et al., 2022).

Previous studies have summarized salient characteristics of
visual transition in narrative visualization. Hullman et al. (2013)
analyzed 42 narrative visualizations and identified six between-
visualization transition types. They also proposed a graph-driven
approach to help build a smooth and meaningful story sequence
by minimizing transition costs. Some researchers got inspiration
from films and adapted cinematic-related theories into transi-
tions. Yang et al. (2021) applied Freytag's Pyramid structure,
which is widely used in films and narratives, to propose a de-
sign space about story creation. Xu et al. were inspired by films
and derived cinematic opening and ending styles for designing
data videos (Xu et al,, 2022, 2023). To put these design guide-
lines and principles into practice, Li et al. (2023) developed an
authoring system for camera movements design for geospatial
data stories. However, they focused on the data stories pre-
sented on screens. Qur work similarly applied cinematic styles
into animated transition but for immersive visualization.

Immersive visualization has the inherent advantage of dis-
playing the 3D structure and spatial information of data and
therefore has great potential in spatial navigation and dynamic
presentation of 3D data (Zhang et al,, 2023; Zhao et al,, 2022;
Lu et al, 2025). However, for non-expert users, independent
exploration in an immersive environment is time-consuming and
easily disorienting, requiring correct spatial guidance to facilitate
effective data understanding and analysis. Camera movement is
a very effective technique that has been shown to drive the
narrative (Conlen et al., 2023; Wang et al., 2024), avoid disturb-
ing the viewer’s sense of position (Isenberg et al,, 2018), and
increase immersion (Borkiewicz et al., 2019). For example, David
et al. present an automatic method for producing a documen-
tary especially for molecular visualizations through producing a
story graph and generating virtual tours by automated camera
and visualization transitions (Koufil et al, 2023). Yang et al.
analyzed 100 3D data videos and summarized cinematography
techniques from shot framing and camera movements, calling
for more practical camera planning methods applied in immer-
sive spaces (Yang et al,, 2023). Our work takes a further step
to automatically generate these cinematography techniques for
immersive visualization.

Automatic Camera Control. Camera control is a classic prob-
lem during computer graphics as searching the camera configu-
ration for information capture and communication (Christie et al.,
2008). Many methodologies have been proposed for different sce-
narios and purposes related to various fields like robotics (Kavraki
et al, 1996), virtual cinematography (He Lw et al., 1996), com-
puter animation (Assa et al., 2008; Yeh et al.,, 2012), 3D games
(Halper et al, 2001), and data visualization (Hsu et al,, 2013).
Christie and Olivier (Christie et al., 2008) have conducted a com-
prehensive survey on interactive and automatic camera control,
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Fig. 1. This work considers properties of immersive narrative visualization,
data, and camera to derive the optimal camera motion that balances data
communication and expressive presentation.

covering fundamental models and approaches. Recent approaches
can be divided into two main categories. The first category is
related to viewpoint selection, where the system evaluates and
recommends a number of views for 3D objects. Another cate-
gory consists of approaches related to camera path planning. In
this case, the system considers multiple constraints to achieve a
globally optimal camera path for complex scenes.

For viewpoint selection techniques, researchers have proposed
many measurements and criteria to serve different scenarios
and purposes, which can be classified into three types: entropy-
based (Vazquez et al.,, 2001, 2003; Feixas et al, 2009), feature-
based (Ranon and Urli, 2014), and learning-based (Tao et al,
2016). Learning-based methods refer to selecting representative
viewpoints based on expert opinions, mainly targeted toward
subjective criteria. Entropy-based viewpoint selection techniques
have been widely used in volume visualizations due to complex
high-dimensional data (Zheng et al.,, 2011; Alharbi et al,, 2023).
For example, Serin et al. (2012) applied viewpoint entropy to
automatically explore representative views of terrain datasets.
iView (Zheng et al, 2011) reconsiders important features for
volume visualizations and proposes an entropy map to display
viewpoint information gained around the object onto a sphere for
interactive exploration. However, entropy-based methods gener-
ally do not consider the semantic information of features and
thus may not select the optimal viewpoints for features with
semantic meaning. In contrast, our work focuses on storytelling
using abstract data and employs feature-based methods to deliver
both geometric and narrative information. To better describe
narrative variations, we derive a semantic feature generated from
data attributes and parametrize this feature into the visual impor-
tance of 3D objects. We integrate it into a constraint satisfaction
problem along with other commonly used camera properties to
select viewpoint candidates for immersive visualization.

For globally optimal pathfinding, the roadmap technique
(Kavraki et al,, 1996) is commonly used in robotics, computer
games, and many camera motion planning techniques. Drucker
and Zeltzer (Drucker and Zeltzer, 1994) applied a constraint
solver to find a collision-free path for navigation through virtual
environments. Anddjar et al. (2004) constructed a cell and portal
graph with an entropy-based measure of the relevance of a view-
point over a 3D grid. Then the graph was used to automatically
generate exploration paths for complex walkthrough models. This
graph-based technique is also utilized in data visualization to
present three-dimensional information. For example, Hsu et al.
(2013) provided the best overall camera paths for volume data
visualizations based on a collision-free roadmap. Compared to
their work mainly for static visualization, our work focuses on
dynamic immersive visualization. Usually, for dynamic scenes
over an entire sequence of frames, the viewpoint is calculated
only on a uniform subset of frames (Christie et al., 2008) and
the remaining frames are interpolated continuously (Barr et al.,
1992). In contrast, our work derives important keyframes during
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the entire animation procedure based on the narrative varia-
tion and then utilizes possible viewpoints for each keyframe
to construct the roadmap. For the smooth transition between
keyframes, Assa et al. (2008) and Yeh et al. (2012) both suggested
camera speed should be as constant as possible or at least with
minimal acceleration. While their studies focused on capturing
regular human behaviors, we take further consideration for cam-
era speed of tracing irregular data actions (Borkiewicz et al., 2019)
to create an immersive narrative experience. However, when
referring to immersive visualization, simply setting a constant
camera speed from data changing is unsuitable due to a common
issue for immersive environments, e.g., motion sickness (Wang
et al., 2019, 2021). Our method provides an intuitive interpolation
function for camera speed, making the balance between motion
sickness and narrative variation.

3. Background and design considerations

To facilitate discussions, this section first introduces key con-
cepts and terminologies related to camera planning for immer-
sive narrative visualization (Section 3.1). Next, we provide an
overview of different cinematic camera types (Section 3.2) and
outline the necessary design requirements (Section 3.3) to be met
in order to enhance the user experience.

3.1. Concept and terminology

This work aims to optimize camera movements for narrative
immersive visualization, specifically for 3D abstract visualization
(such as 3D bar charts and heatmaps) in VR environments. The
input for this optimization process is a sequence of data points
that change over time. In order to synchronize these changes in
data with camera motion, we classify the variations in data points
into two distinct groups (Fig. 1).

e Appearance. Data appearance refers to the addition of a new
data point or the removal of an existing one at each time stamp.
This can be observed in the example of a narrative visualization
for GDP growth, as shown in Case 1 (see top row of Fig. 5).

e Alteration. Data alteration refers to instances where the number
of input data points remains constant, but their values change
over time. An example can be seen in the narrative visualiza-
tion of traffic volume fluctuations over one day, as depicted in
Case 2 (see the middle row of Fig. 5). In the visual appearance,
the visual attribute of the corresponding glyph changes as well.

At each time stamp, the input data is represented by a 3D
abstract visualization that consists of a set of glyphs for each
data point. Animations are used to depict data variation across
different time stamps. Two distinct types of animations are em-
ployed, namely the appearance of visual forms (e.g., a bar that
grows in height) for data appearance, and the variation of visual
forms (e.g., a 3D heatmap that rises and falls) for data alteration. In
accordance with Thompson et al.’s framework for animated data
graphics (Thompson et al., 2020), we define the following terms:

e Scene. A scene is the immersive environment including both the
visualization and background context.

e Glyph. A glyph is a graphic symbol used to represent a data
point. The visual characteristics of a glyph are used to encode
the value of a data point. This study focuses on immersive
visualization, where glyphs are represented by 3D geometric
properties, such as position within the immersive environment,
and shape that is encapsulated by a geometric bounding box.

e Keyframe. A keyframe is defined as a visualization at rest for a
specific time stamp.
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Fig. 2. CineFolio uses (a) the close-up shot sequence for overview camera and (b) the long shot sequence for focus camera, and (c) adjusts the camera speed for

data variations in moving camera.

e Transition. A transition is the uninterrupted change that occurs
between two consecutive keyframes.

Immersive visualization involves many data glyphs and it is
difficult to use current keyframe-based methods to identify and
keep track of them. To prioritize the most important data glyphs
as the narrative focus, we introduce two new quantifiable prop-
erties for a glyph.

e Glyph speed refers to the degree to which a glyph changes over
time when visualized.

e Visual importance refers to the relative significance of a glyph
in the visualization. In general, glyphs that undergo variations
are considered more important than static glyphs.

The visual appearance of glyphs at each keyframe and the
animation effects during transitions are achieved through the
movement of the camera. In particular, we focus on three funda-
mental properties of the camera: position, focal point, and speed.
We omit other properties, such as field-of-view (FOV), that are
fixed from the outset.

3.2. Cinematic camera types

This work aims to automate camera movements to convey
a narrative of 3D abstract data in an immersive environment.
Our inspiration and guidelines come from cinematic theories that
dictate how shots should be composed and organized in films.
We adopt a basic distance-based classification of camera shots for
keyframe: close-up shot, medium shot, and long shot. We attempt
to combine these shot types into a continuous video to de-
velop four cinematography techniques for narrative visualization
summarized by Conlen et al. (2023), illustrated in Fig. 2.

e Overview camera. An overview camera can assist the viewer in
absorbing the scale of the data rather than focusing on details.
This type is commonly achieved by combining multiple long
shots, where the camera is positioned far away from the visual
objects (Cutting et al.,, 2011).

e Focus camera. A focus camera is preferable when presenting
detailed information about specific visual objects of interest.
In contrast to the overview camera, a focus camera is typically
achieved using multiple close-up shots (Katz, 1991), which
brings the object of interest closer to the focal point of view.

e Moving camera. In certain cases involving a moving object,
especially when its speed is too fast for viewers to keep up
with, a moving camera can track the object’s motion and create
a sense of transportation (Conlen et al., 2023). In this work, this
camera is used together with overview camera or focus camera
to control the camera speed between different shots.

e User-controlled camera. Certain cinematic visualizations offer
users some control over the camera, such as predefining the
next keyframe. In this work, we empower users to deter-
mine the content they wish to explore and generate a semi-
automatic camera that reflects their preferences.

We develop algorithms to facilitate camera movement con-
trol for narrative visualization. Our method enables automatic
overview, focus, and moving cameras, while also incorporating user
inputs for user-controlled camera.

3.3. Design requirements

In addition to incorporating cinematic theories to convey a
narrative, we also strive to optimize camera movement in order
to effectively communicate information to viewers. To achieve
this, we reviewed the literature and identified a set of design
requirements that specifically focus on camera control for data vi-
sualization. These criteria are condensed into two levels: keyframe
and transition. At the keyframe level, we strive to achieve the
following goals:

K.1 Occlusion minimization. Numerous efforts have been
devoted to mitigating occlusion problems using camera control
in 3D visualization (Christie et al., 2008). This work also seeks to
reduce occlusion for glyphs in the scene, regardless of the camera
type being used. An essential factor to consider is to maximize
the information of glyphs to be communicated with the viewer.

K.2 Insight maximization. Narrative visualization involves
considerations more than just geometry for minimizing occlu-
sion; it also aims to maximize the communication of data insights
to the viewer (Vazquez et al,, 2001). To achieve this, data objects
encoding the most significant data characteristics are expected to
be positioned near the focal point and made visible to the viewer.

K.3 Visual balance. Since most visualizations are asymmetric,
we focus on the two balance types from the taxonomy in the vi-
sual arts (Martinez and Block, 1995) to achieve visual balance. 1)
Radial balance: A radially balanced view places greater emphasis
on a central point than on other areas. This draws the audience’s
attention to a focal point, effectively achieving the desired effect
for the focus camera. 2) Crystallographic balance: This type aims
to evenly distribute visual weight across all data objects in the
scene. The goal is to draw the viewer's attention to the entire
view, similar to how an overview camera captures a broad view.

At the transition level, we address two related concerns to
engage viewers in stories and prompt them to react to data
insights (Borkiewicz et al., 2019):

T.1 Transition smoothness. Two factors are considered here.
First, sudden changes in the viewing direction should be avoided
as they may trigger motion sickness, especially in VR environ-
ments (Wang et al, 2019). Second, camera speed is expected
to change smoothly when transitioning between consecutive
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Fig. 3. Overview of our approach to camera movement planning for immersive narrative visualization, which can be divided into two main stages: (1) the viewpoint
selection stage filters candidate viewpoints at each keyframe, and (2) the path planning stage searches for the optimal camera movement path and interpolates
smooth transitions between keyframes. At each individual step, user control is enabled to allow for customization based on their preferences and knowledge.

keyframes. Abruptly jumping from one keyframe to another may
cause the viewer to miss important insights or anticipate actions
prematurely. Additionally, camera transitions are expected to
align with the intended storyline to support narrative coherence.
Viewpoint changes between keyframes should not only preserve
spatial orientation but also emphasize key narrative beats. There-
fore, we consider the relationship between the camera speed
and data variation. When a data point changes significantly, the
camera speed of the moving camera should be increased smoothly
to keep pace with the data change.

T.2 Overall continuity. To create a more cohesive storytelling
experience, the camera movement should be consistently ori-
ented throughout the entire story. The keyframe-based camera
planning method only computes the locally optimal viewpoint for
an individual keyframe. If viewpoints for two or more consecutive
keyframes have huge differences in camera position and orienta-
tion, this can cause disorientation and disruption to the viewer’s
sense of space and scale, making them feel lost in the 3D zone.

4. CineFolio

Our semi-automated camera approach CineFolio enables effi-
cient planning of camera movements to support various cine-
matography camera types, including overview, focus, and moving
cameras, while allowing users to manipulate camera movements
in user-controlled camera mode. To achieve this, we employ a two-
stage procedure as illustrated in Fig. 3: we first perform viewpoint
selection (Section 4.1) to filter a set of candidate viewpoints in
each keyframe and then generate an optimal camera moving path
through path planning (Section 4.2). This results in a video of
narrative visualization that meets the desired requirements. To
facilitate the discussion, we list down commonly used notations
adopted in this work as follows:

e Keyframe. A keyframe is denoted as k, with K indicating the
total number of keyframes in a narrative visualization. The
timestamp of the keyframe is denoted by t(k). It is selected
based on prominent data variations.

e Transition refers to the animation that takes place between two
consecutive keyframes k and k + 1. Throughout this work, the
transition time. represented as t(k+ 1) — t(k), remains constant
for all transitions within a narrative visualization.

e Data refers to a sequence of data points denoted as {Dy|k €
{1, ..., K}}. At each keyframe, D includes a list of data points
represented by Dy, := {d};}!zﬁ'. The number of data points in Dy
differs based on whether there is an appearance of new data
points, in which case |Dy ]| is greater than |Dy|, or if there is a
data alteration, in which case |Dyy | = |Dyl.

e Immersive visualization refers to a collection of abstract visual-
izations presented in an immersive environment and denoted
as {Gylk € {1,...,K}}). Each visualization G, consists of a
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Fig. 4. Different visual importance settings for overview camera and focus
camera camera. In the overview camera, every region of the glyph is equally
important. In a focus camera, we provide three assumptions for computation
based on data change, between-glyph, and within-glyph relationships.

set of glyphs represented by {g,“}l!i"ll, where g corresponds to

the data point dj. Each glyph g includes multiple attributes,
such as bounding box bbox(g), glyph speed speed(g), and visual
importance vi(g).

4.1. Viewpoint selection

The objective of this stage is to generate a list of viewpoints
that meet the requirements K.1-K.3 in the keyframe level. While
previous studies on viewpoint optimization have focused on the
geometric properties of visual objects, this work goes a step
further by taking into account the data attributes defined by the
visual importance distribution.

4.1.1. Visual importance distribution

In order to assess the level of visually compelling regions in
visualization, we introduce the concept of visual importance. The
computation of visual importance, with a range from 0 to 1, varies
depending on the type of camera being used, as depicted in Fig. 4.
Specifically, for the overview camera, which displays the data scale
in the scene, we assume that all glyphs are equally important
and assign a uniform visual importance distribution to all glyphs.
In the user-controlled camera mode, users can manually assign
the importance distribution based on their preferences. The fo-
cus camera mode presents a much more complex scenario with
glyphs that have significantly varied levels of interest. Here, we
consider the visual importance distribution from three different
aspects:

e Data change: Glyphs that experience larger changes in the
encoded data are deemed more interesting.

e Between-glyph relationship: If a glyph is deemed important, its
adjacent glyphs will also be affected and considered important
to some extent. The degree of influence is determined by their
spatial relationship to the focal glyph.
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Algorithm 1 Compute visual importance

Require: A list of glyphs {g}} and data changes {Ad}}
Ensure: Visual importance distribution {vi(g, )}

1: for each g, € {g;} do

2 Initialize vi(g;) = 0;

3 vi(g,) = vi(g, )+ MappingDataChange(Ad} );
4: Normalize {vi(g;)} = {vi(gy)}/ Tde) vi(gy);
5: for each g} € {g;} do

6:  for each g','( € {g‘,i} &&i#jdo

7 vi(g)) = vi(g)) + Decay(Dist(g!, g.));

8: Normalize {gi(g,i)} = {vi(g})}/ Z&’iﬂgﬂ? vi(g));
9: return {vi(g;)}

e Within-glyph relationship: Different regions on a glyph are not
equally important. For example, if a bar is increasing in height,
we consider the top region of the bar to be the most important,
with other regions becoming less important as the distance
from the top increases. The importance of an area on this glyph
is distributed based on the importance of this single glyph and
the distance from the varying area.

To compute the visual importance of each glyph g/ at keyframe
k, we first measure the corresponding data change from the
previous keyframe as Ad), = |d} —d}_,|. Next, we pass the glyphs
{gj} and their data changes {Ad}} into Algorithm 1, which calcu-
lates the visual importance for each glyph based on data change
and between-glyph relationship. Here, MappingDataChange(Ad})
refers to a continuously increasing nonlinear function, empiri-
cally tuned based on trial and error, to scale the magnitude of
data change into a value between 0 and 1. To account for the
within-glyph relationship, we further divide the bounding box of
a glyph into stacked boxes and assign different levels of im-
portance to each individual box, using the same decay function
when modeling between-glyph relationship. The resulting spatio-
temporal importance distribution is then utilized to determine
the camera’s focal point in each keyframe. This information, along
with user-selected cinematography types and predefined con-
straints, is then passed to the next stage for calculating viewpoint
satisfaction.

4.1.2. Viewpoint satisfaction

Viewpoint selection is formulated as a constraint satisfaction
problem (CSP), which has been widely adopted in camera con-
trol (Christie et al., 2008). For a 3D virtual scene, searching for the
globally optimal viewpoint involves exploring the entire possible
space of camera positions relative to a given focal point. However,
this process can be computationally expensive, due to the huge
search space. In the context of this work, immersive visualizations
involve only a small number of polygons, so we can simplify the
search by sampling points evenly from bounding spheres with
varying radii centered around the focal point. This approach helps
to avoid an overly exhaustive search.

We define a viewpoint satisfaction function as a linear com-
bination of the constrained satisfaction of parameters for a par-
ticular viewpoint vp, which are derived from the properties of a
glyph g and a viewpoint vp (Table 1). Among these parameters,
projection area and framing size are primarily affected by the
distance between the viewpoint and the fixed focal point deter-
mined by the weighted visual importance distribution. These two
metrics, along with horizontal and vertical orientation, refine the
viewing angle. The occlusion parameter affects both the viewpoint
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Table 1

Parameters {p;} used in CSP for viewpoint satisfaction, derived from a glyph g

and a viewpoint vp.
PARAMETER SYMBOL

Projection Area area(g, vp)

SEMANTICS
Area of g projected on vp

Framing Size  frame(g, vp) Fraction of g projected on vp

Horizontal orin(g, vp) Angle between the front vector of g and
Orientation h&. vp the vector from the focal point to vp
Vertical ori,(g, vp) Angle between the up vector of g and
Orientation v(&: P the vector from the focal point to vp
Occlusion occ(g, vp) Fraction of g occluded by other glyphs on vp

distance and the viewing angle. For each parameter, we defined
its individual satisfaction function using a B-spline with an arbi-
trary number of control points. After trial and error, the chosen
control points were decided based on the opinions of two experts,
one in data visualization and the other in cinema, regarding the
video's last performance. To determine a possible viewpoint vp
at keyframe k, we compute the overall satisfaction based on each
glyph’s satisfaction for each parameter p; € {p;}, weighted by the
glyph's visual importance vi(g;) and the normalized parameter
weight wp,:

Sat(vp) = Y wvi(gh) | D wySat(p;. pi(gl. vp) | .
g,';e{g,‘;} pisipjl

We then select the top N candidate viewpoints for each
keyframe by ranking all sampled viewpoints based on their satis-
faction scores. Formally, the selected set of candidate viewpoints
Vy for keyframe k is computed as:

V; = argmax Z Sat(vp), subjectto |Vi| =N

k upeVj,

where V is a subset of the candidate viewpoints at keyframe k,
and N is the number of best viewpoints that satisfy keyframe-
level constraints. To improve computational efficiency, we em-
ploy geometric methods to evaluate properties based on bound-
ing boxes and ray casting, as described in Ranon and Urli (2014).
The final optimal path is computed by solving the globally con-
strained camera path optimization described in Section 4.2.1,
which integrates this viewpoint satisfaction with transition cost
minimization.

4.2. Camera path planning

In the path planning stage, the main objective is to meet
the requirements T.1-T.2 by utilizing the viewpoint candidates
generated in the first stage. Taking a global perspective (T.2), our
method aims to search for the optimal camera path with the least
transition cost. Specifically, our approach considers the speed of
data variation to produce a camera path that smoothly tracks the
changes in the data (T.1).

4.2.1. Camera path search

In order to select the optimal viewpoints for each keyframe,
we consider both local satisfaction and global continuity. To this
end, we construct a camera path graph that connects the top
N viewpoint candidates. We use this graph to determine the
shortest path that minimizes the transition cost of both camera
movement distance and orientation shifts. To begin the camera
path search, we first define two imaginary viewpoints as the
source and destination. These viewpoints are not included in
the final path. Then we construct a camera path graph from all
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Fig. 5. Video snapshots from example cases of GDP growth (top), traffic volume (middle), and S&P500 stock price (bottom) generated with CineFolio. Each case
contains four snapshots for overview camera and focus camera respectively.

viewpoint candidates of all keyframes. In the camera graph, the
node represents a possible viewpoint with its satisfaction, and
the edge connects two viewpoint candidates from two consec-
utive keyframes weighted by the transition cost. To reduce the
computational complexity, we first prune those nodes with too
low satisfaction or having too large transition costs with the last
keyframe. To satisfy the overall continuity (Overall continuity)
requirement, we define the transition cost between two consec-
utive keyframes as the difference between two fields of view.
We denote the camera position of viewpoint vp as pos,, and
the orientation as the vector from the focal point to the camera
position, ori,, = pos,, — focal,,. The cost evaluation function
to compute the weight for the edge between two viewpoints
vp;, vp; can be described as the combination of distance between
two viewpoints' positions and angle between two viewpoints’
orientations:

C(vpi, vpj) = c1Angle(orivp,, OTiyp;) + C2Dist(poSup;, POSup; ),

where ¢; and c; are the coefficients of the different terms. We
then use Dijkstra’s algorithm to compute the optimal viewpoints
for all keyframes with the shortest transition cost with minimal
orientation and position shifts, from the source to the destination
in the graph. The full camera path is constructed by linearly in-
terpolating the positions and orientations between these selected
viewpoints.

4.2.2. Smooth transition interpolation

In the case of moving camera, the camera speed should be
as constant as possible or at least with minimal acceleration
to minimize dizziness and confusing views (Assa et al, 2008;
Yeh et al, 2012). However, for the animated graphics, the visual
appearance of glyphs might change at a more irregular speed
according to the data variation. If the camera speed is still limited
in a low range, it may happen that the changing glyph goes out
of view. Taking this difference between camera motion and data
variation into consideration, we define a camera speed function to
catch up with data variation while maintaining continuous speed
changes.

We have obtained the optimal viewpoint vp,, for each keyframe
k in the viewpoint selection stage. In the normal case, the camera
speed just maintains a constant during two keyframes k and
k + 1 as Dist(pos,p,, pos.p,, )/ At, where At = t(k + 1) — t(k)
denotes the timestep between two keyframes. For another case
of the too-fast speed of the changing glyph, the speed function
can be modeled as a polynomial function of at least second
order gi(t) to catch up with data variation during two keyframes.
Requirements are considered from two aspects. First, both the
speed and acceleration should change continuously, and thus
acceleration at all keyframes is zero, g/(t(k)) = 0. Second, the
moving distance between every two keyframes is given since the

optimal position for each keyframe is determined in the viewpoint
selection stage. This means the integral results of the polynomial
function between every two keyframes should be equal to the
normal speed function, f[ tk+1) gs(t] = Dist(pos,y, , posp,,,)- This
polynomial function has mu]tlple possible solutions to meet these
requirements. Hence, we require that the optimal speed function
also minimizes a deviation with the normal constant speed at
each value of time. When the camera speed increases above
the limited value during two keyframes, it should continuously
decrease during the next normal transition rather than directly
jump to a constant. The deviation is measured between three
keyframes as:

deviation(g,(t)) = f " (g(t) — £i(6)F

4.3. User control

We provide users with the flexibility to manipulate the camera
at each stage of the process (as shown in Fig. 3). CineFolio is
designed to support both novice users who lack expertise in
cinematography or data visualization, and expert users seeking
fine-grained control. Novice users can select from predefined
cinematic camera types, while more experienced authors can
manually adjust importance scores for glyphs in the Unity inter-
face to control the narrative focus. First, users can choose from
three camera types as input: overview camera, focus camera, and
user-controlled camera. For the first two camera types, CineFolio
automatically computes the visual importance distribution. For
the user-controlled camera, users can set the visual importance
for each glyph based on their own preferences through the Unity
editing panel. Users can also choose which constraints to use
during the automatic design process. Lastly, users can manually
adjust the camera positions for each keyframe on the optimal
camera path generated by our method.

5. Evaluation

We first created three example cases of immersive narra-
tive visualizations using CineFolio implemented in Unity3D (Sec-
tion 5.1) to demonstrate the validity in various types of visualiza-
tion. We also conducted a within-subject study to evaluate the
usefulness and user engagement with the immersive narrative
visualization by CineFolio (Section 5.2).

5.1. Example cases

We created three types of immersive visualizations (Fig. 5),
which are most commonly used in existing 3D data videos (Yang
et al.,, 2023).

Case 1: GDP Growth. This story illustrates China's economic
growth between 2012 and 2022 through an animated bar chart.
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Fig. 6. Snapshots for traffic volume in user-controlled camera. The user expected
to focus on the region with extreme values.

The intended narrative communicates a steady and positive pro-
gression in national GDP over time. Each bar corresponds to the
GDP of a particular year, and the chart demonstrates a consis-
tently increasing trend in GDP on a global scale. We used CineFolio
to create a dynamic visualization that showcases the bars growing
steadily with a constant speed one by one and the texture of
bills to facilitate the visceral understanding of data (Lee et al,
2021). The overview camera tells the story by showing the entire
timeline of bars steadily rising in height. This gives viewers a
broad impression of continuous growth. In contrast, focus camera
emphasizes key narrative beats by zooming in on the most recent
bars, underscoring the acceleration of GDP near the end of the
timeline.

Case 2: Traffic Volume. This story presents daily fluctuations in
Beijing’s urban traffic across different regions and hours through a
3D heatmap. The narrative focuses on the emergence of hotspots
and transitions in congestion throughout the day. The geospatial
data is aggregated and encoded into 64 bars that represent the
traffic volume of each smaller region within the selected area.
The traffic volume of each region was encoded by colors and
the height of bars for intuitive data perception from different
angles. Since the data alteration appears regularly according to
data, we extract timestamps of these variations as keyframes. The
overview camera camera narrates this spatial variation by orbiting
across the cityscape, mimicking a cinematic drone shot to ex-
pose the overall patterns. The focus camera highlights individual
regions with sudden spikes in volume, supporting a story about
anomalies or critical time windows in congestion. For example,
in keyframes 8 and 17, the camera is attracted by those very
high bars, which means the largest traffic volumes. However,
in keyframe 21, the focal point is obviously changed to the left
region next to those very high bars since there appear huge data
variations with the last keyframe.

Case 3: S&P500 Stock Price. This story conveys the volatile fluc-
tuations of the S&P 500 during the second half of 2022 through
a line chart. The narrative is about local highs and lows within
a globally uncertain market. Similar to Case 1, overview camera
provides the full trendline for context, showing the rise and fall
across time. In contrast, focus camera traces the growing line
with irregular up and down changes and emphasizes the local
trend more. Compared to overview camera, focal points of view
are much closer to the highest and lowest points in keyframes 10
and 19. Especially in keyframe 19, this close shot provides a more
accurate comparison between two values with subtle differences.

For these cases, we also enlisted two users to test user-
controlled camera for the same visualizations. The user-controlled
camera allows the author or viewer to define their own story, for
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instance by highlighting a region of interest or anomaly. In the
traffic case (Fig. 6), a user specified a focus on extreme values,
resulting in a personalized narrative emphasizing that anomaly
throughout the camera movement. Initially, the user assigned a
value of 1 to the specific glyph and 0 to the others, denoting
his preference. At keyframe 1 of the resulting video, the view
encompasses all the glyphs, and the camera-to-glyph distance is
between configurations in the views captured by two automated
cameras. Between keyframes 1 and 8, the camera moves toward
the crucial glyph. Finally, as depicted in keyframes 17 and 21,
the camera focuses solely on the designated glyph while the
automated cameras attempt to capture a broader range of glyphs
(middle row of Fig. 5).

5.2. User study

5.2.1. Participants

We recruited 12 participants (M = 5, F = 7; Age: 20-27)
through the university mailing list and collected their prior ex-
perience in VR, visualization, and computer games. They all had
normal or corrected-to-normal visions. Their VR experience var-
ied: 3 participants had no experience; 3 participants had less than
10 h experience; 3 participants had 10-20 h of experience, and 3
participants had more than 20 h of experience. Most participants
have experience using and creating data visualization and their
self-reported experience ranged from 1 to 3 years. Most partici-
pants (8/12) played computer games frequently: only 4 reported
they played less than 2 h of games per week, and the other 2
participants played 20 h per week. We provided a $10 gift card
as compensation for each participant.

5.2.2. Design procedure

The experiment was within-subject with three conditions that
were divided according to the degree of automatic guidance
based on our method, including (1) a fully automated overview
mode, (2) a fully automated focus mode, and (3) a user-controlled
exploration mode without any navigation guidance. For per par-
ticipant, we obtained 3 camera modes x (2 Bar Tasks + 3 Heatmap
Tasks + 2 Line Tasks) x 2 answer ranges (1 for accuracy and 1
for confidence) = 42 responses. We used a Latin square design to
partition the participants into 3 groups to balance the order of
the three tested camera modes.

Participants were first given a brief introduction to the ex-
perimental procedure. VR headset (Oculus Quest 2) was adjusted
to ensure the sample text could be shown in front of them and
seen clearly. We then provided a short VR training about how
to control the camera in the VR headset with controllers. We
allowed them to try a self-controlled camera when the user-
controlled mode was presented in the experiment for the first
time. For each condition (camera mode x visualization), par-
ticipants first experienced the immersive narrative visualization
without known tasks. Then we asked them to finish the tasks
one by one. We combined several low-level tasks referring to
Brehmer and Munzner's taxonomy (Brehmer and Munzner, 2013;
Munzner, 2014) and generated three or four detailed questions
for each case to encourage users to interpret data from different
perspectives. Participants were allowed to explore the visualiza-
tion unlimited times. After completing all tasks, participants were
asked to fill in a 7-point Likert scale questionnaire on each mode’s
overall engagement of the visualization by collectively consider-
ing four aspects (i.e., focused attention, cognitive involvement,
aesthetics, enjoyment) (Amini et al., 2018), usability, immersion,
and workload of each mode (i.e., the mental load and physical
load). We also conduct a short interview to collect their feedback
about each camera mode, their expected automated camera de-
sign, and other expected guided tools in immersive visualizations.
The experiment lasted 1 h on average.
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Fig. 7. Results for the (A) average time, (B) accuracy, and (C) confidence score by case. Confidence intervals indicate 95% confidence for mean values. An asterisk

indicates statistical significance for p <.05.
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Fig. 8. Results for the participants' subjective ratings. An asterisk indicates
statistical significance for p <.05.

5.2.3. Results

Quantitative Result. As shown in Fig. 7(A), we observed a
trend that the average time with our methods (i.e., overview cam-
era and focus camera modes) is less than the self-controlled mode
without significance (p > .05). For the average task accuracy
in Fig. 7(B), we found that participants got significantly higher
scores with the self-controlled mode than the focus camera mode
in the line (p < .05) and bar chart cases (p < .001). Moreover,
participants performed better under the overview camera mode
than the focus camera mode with the bar chart case (p < .001).
There is no significance between these modes in the heatmap
case. Additionally, participants reported significantly higher con-
fidence scores with the self-controlled mode and the overview
camera mode than the focus camera in the bar chart and the line
chart cases (Fig. 7(C)).

In Fig. 8, the subjective ratings of all cases show that partici-
pants perceived the overview camera and the self-controlled mode
have higher usability scores for finishing the tasks than the focus
camera mode (p > .05). They reported the focus camera has a
higher mental load than the overview camera (p < .05). How-
ever, their responses indicate that the overview camera and focus
camera modes have lower physical load than the self-controlled
mode (p < .001). The result of the overall engagement shows that
participants were more engaged with the self-controlled mode
than the focus camera mode (p < .05). The results of other aspects
exhibit no significant variation in the three modes.

Qualitative Feedback. We present participants’ reasons for
their subjective ratings (Fig. 8) and how they engage with the
immersive visualization under different experimental modes.

Immersion. Generally, participants reported the novel expe-
rience with visualization in VR. Although they did not show a
significant difference in different modes (Fig. 7(D)), more than
half of participants (7/12) mentioned that the focus camera pro-
vided a more “immersive and shocked experience with data (P8)”
because they could observe the visualization from a relative close

view with “smooth guidance that follows the animation of data
(P11)".

Usability. Participants rated lower scores for the usability of
the focus camera (Fig. 7(D)) than the other modes as the focus
camera mode is not helpful in understanding data. They preferred
to use overview camera and the self-controlled mode because both
of them can “provide a brief and steady perception of the entire
data (P3)". This echoes the task accuracy result in Fig. 7(B). How-
ever, some participants reported that focus camera is beneficial
for perceiving the data changes, such as “comparing similar data
with slight differences (P9)", “tracing important changes (P10)", and
“judging the extreme values (P7)". Most of the participants (9/12)
said that they would prefer to use the automated camera rather
than self-controlled mode to understand the data when they may
“not know where to watch without the guidance at the beginning
(P4)” or “have difficulty in manually catching up with the dynamic
data (P5)”

Workload. Echoing the feedback on the usability, participants
reported a higher mental load with focus camera than overview
camera as they could not always get the whole picture of data.
The other reason is that sometimes they “may not trust the focus
camera that could always deliver important information (P10)". For
the physical load, they rated significantly higher scores with the
self-controlled mode than the automated cameras as they “do not
need to move my body, even my head (P1)”, which can be easy to
view the data animation. In addition, they expressed the difficulty
in adjusting the camera when viewing the dynamic visualization
as they “could be concentrated on the task with the automated view
(P5)” and “always forget to use the controllers to follow the data
changes (P1)".

Engagement with Visualization. Participants were more en-
gaged with the self-controlled control mode than the focus camera
as they prefer “the sense of free control (P1)” in VR, and most
of them (8/12) may connect the engagement with the freedom
based on their feedback. We found that participants show dif-
ferent altitudes toward focus camera. Some participants (5/12)
reported shocked viewing experience with “obvious visual impact”
and explicitly expressed the preference for this mode because it
brings “a deepen the impression of data variations (P7, P9)" and “a
drastic vibration that makes me feel I am hitting the visualization
(P12)". In contrast, others (P4, P10) said focus camera emphasizes
much on the current view of data which makes them easier
to “lose the memory of previous information”. Participants gave
higher cognitive involvement scores of overview camera and self-
controlled mode than focus camera as they could “obtain the
overview perspective, especially for the bar chart and line chart (P4,
P7)". This allows them to finish the tasks more easily than using
focus camera based on their cognition.

6. Discussion
We discuss the design implications and research opportuni-

ties for future camera motion planning in immersive narrative
visualizations based on our findings.
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Understand the best practice of cinematography between
immersive narrative and data exploration. We used cinematog-
raphy as the narrative mechanism in immersive visualization, as
we believe, with the convenience of teleportation (Isenberg et al.,
2018) and aesthetic potential (Conlen et al., 2023; Borkiewicz
et al, 2019), it can be a promising technique to enhance the
narrative experience as well as facilitate the data exploration. As a
probe of extending cinematic effects to virtual reality (Yip, 2020),
we initially considered the most commonly used camera shots
and parameterized the automatic generation as a constraint-
based optimization problem. Compared to traditional 2D story-
telling, virtual reality enables embodied experiences that spatially
and temporally situate the viewer inside data stories. This allows
for unique narrative effects, such as surrounding a user in a
data hotspot, or guiding attention through physical proximity,
which would be impossible on flat screens. However, constraints
are predefined based on the general consensus, and thus final
performance is not sensitive to user preference. Future work
could leverage large language models to design a more flexible
and personalized approach for more narrative visualizations.

Enhance viewers’ trust of automatic camera design through
data-driven approaches. Our study revealed that a few partic-
ipants were confused about the reasons for automatic camera
motion. As a result, they kept a close eye on the visualization in
order not to lose any information. This conflict highlights a need
for making automatic logic more transparent, potentially through
visual overlays or annotations that explain why the camera is
moving where it does, helping novice users build trust in the
system’s storytelling capabilities. Besides, the design considera-
tions of automatic camera planning should consider users’ prior
experience with VR and visualization. For example, professionals
may find their expected exploring logic inconsistent with the
normal one generated by automatic cameras. Future research
could also focus on learning camera techniques from existing
3D data video examples through data-driven approaches such as
neural networks and applying the learned rules to create new
narrative immersive visualizations.

Enrich interactive layers for guided immersive narratives.
Our study shows that many people prefer to explore complex
visualization freely with first guidance. The initial goal of our
method is to generate the optimal camera motion for viewing the
animated immersive visualization. Therefore, users were limited
in the provided perspectives when viewing the visualization. A
few participants emphasized the sense of control in the im-
mersive environment and expected the combination of flexible
interaction and automatic guidance. For instance, when audi-
ences view an immersive visualization following an automatic
camera, they should be allowed to control the camera manually
through body actions at any time. Thus, guided camera design
responsive to real-time human actions remains promising. Future
work should investigate hybrid approaches in which the system
suggests an initial camera path based on the storyline, while
allowing users to dynamically adjust or modify segments of the
path.

7. Conclusion

In summary, this paper presents CineFolio, a semi-automatic
camera planning approach that guides data exploration and en-
hances the engaging narrative experience for immersive visual-
izations. Based on a set of design considerations that summarize
commonly used cinematic camera types and graphics criteria,
CineFolio facilitates automatic creation for three common cam-
era types, i.e., overview camera, focus camera, and user-controlled
camera, by allowing users to input their limited preferences and
edit the generated camera path. CineFolio has been evaluated with
three cases of various abstract data visualization types and user
studies, showing its potential for aiding viewers to effortlessly
and engagingly explore immersive visualizations.
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Appendix A

A.1. The list of experimental tasks

Case 1: Bar Chart

Q1: From which year does GDP exceed 1 million?

Q2: Which year has the largest growth rate?

Case 2: Heatmap

Q1: Which area has largest overall traffic volume?

Q2: Which time has the largest volume?

Q3: Which area has the largest variation in traffic volume?
Case 3: Line Chart

Q1: Which week has the highest stock price?

Q2: Which week has the lowest stock price?

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.visinf.2025.100259.
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